Noise-induced phase space transport in two-dimensional Hamiltonian systems.

نویسندگان

  • I V Pogorelov
  • H E Kandrup
چکیده

First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic mixing in noisy Hamiltonian systems

This paper summarises an investigation of the effects of low amplitude noise and periodic driving on phase space transport in three-dimensional Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and/or a surrounding environment. A new diagnostic tool is exploited to quantify the extent to which, over long times, ...

متن کامل

Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems

A two dimensional self-gravitating Hamiltonian model made by N fullycoupled classical particles exhibits a transition from a collapsing phase (CP) at low energy to a homogeneous phase (HP) at high energy. From a dynamical point of view, the two phases are characterized by two distinct single-particle motions : namely, superdiffusive in the CP and ballistic in the HP. Anomalous diffusion is obse...

متن کامل

Phase space transport in noisy Hamiltonian systems.

This paper analyzes the effect of low amplitude friction and noise in accelerating phase space transport in time-independent Hamiltonian systems that exhibit global stochasticity. Numerical experiments reveal that even very weak non-Hamiltonian perturbations can dramatically increase the rate at which an ensemble of orbits penetrates obstructions like cantori or Arnold webs, thus accelerating t...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Transient Two-Dimensional (r-z) Cyclic Charging/Discharging Analysis of Space Thermal Energy Storage Systems (RESEARCH NOTE)

A two-dimensional transient axi-symmetric model was developed to study the effects of various thermal and geometric parameters on cyclic heating and cooling modes of a phase-change thermal energy storage system. The high-temperature thermal energy storage device utilizes LiH for heat sink applications to store the waste heat generated during power-burst periods. The stored heat is then discharg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 60 2 Pt A  شماره 

صفحات  -

تاریخ انتشار 1999